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Synopsis 

Temperature dependencies of viscoelastic functions of the three-component models of composite 
materials in the transition state temperature range of polymer binder have been studied. On the 
basis of theoretical calculations for the models, a conclusion has been made about the conditions 
for shift of the relaxation maxima along the temperature axis. Also conditions for their resolubility 
on tan 6 curves were determined for materials such as fiied polymers as well as anisotropic laminated 
and reinforced plastics with deformation of the components in series. These effects are due to the 
change in properties of the boundary layer of the polymer. They are entirely dependent on the 
concentration ratio between the boundary layer and the bulk of the binder polymer and on the dif- 
ference in their glass temperatures Tg. Concentration of the high-modulus filler affects Tg of the 
composition. This is due to the change in the ratio of concentrations of the polymer in the boundary 
layer and in the bulk. With parallel deformation of the components of the three-component model, 
resolubility and shift of the relaxation maxima depend not only on the above factors, but also on 
the reinforcing filler concentration. 

Introduction 

In a previous theoretical study,l we have considered the viscoelastic behavior 
of composite polymeric materials in the range of transition temperatures. 
Changes in properties of polymer layers of finite thickness at  the interphase with 
high-modulus fillers were analyzed under the assumption that composite ma- 
terials consist of three components: filler, surface layer, and bulk polymer. 
Mechanical losses tangent tan 6 of this three-component system should have its 
maximum at a temperature equivalent to the temperature of maximum tan 6 
for the two-component system: boundary layer-bulk polymer. 

Thus, neglecting contribution to the losses by the high-modulus nonrelaxing 
filler, the question of calculation of the shift and finding conditions for the 
resolubility of the relaxation maxima in a three-component composite was 
confined to a study of conditions for shift and resolubility of maxima on tan 6 
= f (2') curves for the two-component system.l 

Closer approximation to filled and reinforced polymers would be a three- 
component model, since mineral filler, though showing no temperature depen- 
dence of viscoelastic properties in the polymer transition temperature range, 
still substantially increases the complex modulus G', which may change shape 
of the tan 6 = f ( T )  curves of a composite, since tan 6 = G"/G' where G" is the 
imaginary part of the complex modulus. 

Besides, presence of the filler changes concentration ratios of the boundary 
layer cpz and the bulk polymer cpj. This can result in a change of resolution and 
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shift conditions of the relaxation maxima on the tan 6 = f (T) curves for a com- 
posite material. 

Therefore, more precise calculations and analysis of viscoelastic behavior of 
composite polymeric materials in the transition temperature range have been 
made for three-component models comprising: high-modulus filler f ,  boundary 
polymer layer 1, and bulk polymer b (see Fig. 1). 

We shall first deal with the simplest models for fiber-reinforced and laminated 
plastics with unidirectional arrangement of the reinforcing elements. For the 
case of deformation of such compositions normal to the arrangement of rein- 
forcing fibers or normal to the plane of layers of the reinforcing elements (in the 
case of laminated plastics), the model is Figure l(a). If deformation direction 
coincides with the direction of reinforcing elements, then the model is Figure 

MODEL WITH PARALLEL DIRECTION OF DEFORMATION 

Consider the composite materials formed by reinforcing fibers and polymer. 
Considering our three-element model, assume the fibers are always separated 
by the boundary layer which surrounds them. 

In the case of parallel deformation of all three elements-the polymer, its 
boundary layer, and the reinforcing element-the complex shear modulus G * 
of the composite can be expressed using the complex modulus of the components2 
as follows: 

(1) 

where G; is the complex modulus of the reinforcing material, GE is the complex 
modulus of the polymer; GI is the complex modulus of the boundary polymer 
layer; and q, (Ob and cp1 are relative volumes for each of the components, re- 
spectively. 

Taking into account that G* = G‘ + iG” and tan 6 = G”/G‘, it can be shown 
that 

(2) 

(3) 

G* = cpfGj + cpbGi + cplGT 

G = V f G ;  + cpbGb + cplG; 

G“ = QfG;  + (PbGi + cpiG; 

1 

I 
4 

I 

t 
6) 

Fig. 1. Models of composite materials with unidirectional arrangement of fibers in presence of 
the polymer interphase layer: A, deformation direction normal to khe fiber axis; B, deformation 
direction parallel to the fiber axis. Arrows indicate deformation direction. 
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In calculations according to formulas (2) and (3), the following assumptions have 
been made: Reinforcing elements are cylindfical fibers (radius r )  with shear 
modulus and losses G ;  = lo5 kg/cm2; tan 6 j  = these values are constant in 
the studied temperature range. Experimental values for temperature depen- 
dencies Gb and tan 6b for an epoxy polymer on the basis of the epoxy diamine 
resin and polyethylene polyamine3 were used as mechanical characteristics of 
the polymer binder. Thickness of the boundary layer d was independent of the 
filler concentration. 

In calculations, it was also assumed that curves of the temperature dependence 
G ;  and tan 61 are similar to the curves Gb = f ( T )  and tan 6b = f ( T ) ,  but are shifted 
arbitrarily along the temperature axis to lower or higher temperatures. Equation 
(4) is correct only in the cases when boundary layers do not overlap. A t  d / r  = 
0.2 for hexagonal packing of fibers at ‘pf > 0.60, the boundary layers begin to 
overlap and at  ‘ p j  > 0.70 all the binder moves into the boundary layers. In this 
case, the system becomes two-phase and ‘pb = 0. For ‘ p j  > 0.7, ‘pb  = 1 - ‘pj. In 
the interval 0.60 > ‘pf > 0.70, the determination of ‘pb [eq. (4)] becomes incorrect. 
For materials with cylindrical reinforced fibers, there is one more restriction. 
Even if we suppose only point contacts between fibers and no boundary layer 
at all, ‘ p j  cannot be more than 0.907. Therefore, the calculations have been made 
only up to ‘pf = 0.69, because for greater values ‘ p j ,  they are theoretically mean- 
ingless for accepted assumption as for fiber radius, boundary layer thickness, 
etc. 

With a parallel, unidirectional arrangement of the cylindrical reinforcing el- 
ements, the concentration of the boundary layer c p ~  will be a linear function of 
the filler concentration ‘ p j .  

- 
‘pf have been substituted into eq. (3). Fig. 2 shows temperature dependencies 

On this basis, for any specified ‘pf value the respective ‘pl  and ‘pf = 1 - 

,an 6 
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Fig. 2. Dependencies tan 6 = f( T) of the two-component model polymer boundary layer (curves 
2 and 4) and of the three-component models of type B on the basis of these binders (curves 1 and 
3) at different volumes fractions of the components for Tgl = 92’C and Tgb = 117°C: 1. C , O ~  = 0.5; 

0.5. 
Cpl  = 0.45; q b  = 0.05. 2. Cp1 = 0.3  Cpb = 0.1. 3. Cp/ = 0.5; Cpl = 0.25; Cpb = 0.25. 4. Cp1 = 0.5; q b  = 
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tan 6 of three component specimens (curves 1 and 3) calculated by the above 
method. From these curves, temperature Tg for maximum tan 6 with various 
values of Tgl and ‘pf have been derived. Values obtained in this way are gener- 
alized in dependencies of Tg vs. concentration ‘pf of fibers with various properties 
of the boundary layer, specified by Tgl value (Fig. 3). Figure 3 shows that the 
presence of the boundary layer of set thickness in a three-component model 
considerably affects Tg of the composition only at  rather high filler concentra- 
tions. If Tgl in particular is higher or lower than Tgb by more than 20°C, the 
second loss maximum appears on the curves tan 6 = f (  T )  at temperatures which 
are much lower than Tgl. Further increases of ‘p j  and transition into the 
boundary layer of large amounts of the binder leads to the presence of only one 
maximum on the tan 6 = f (  T )  curves due to the properties of the boundary layer; 
but Tg for this maximum is substantially lower than Tgl chosen in calculations. 
If Tgl differs from Tgb by not more than 2OoC, only one maximum remains on 
tan 6 = f ( T )  curves in the entire ‘pf range. A t  rather high ‘pf, the maximum is 
shifted towards higher or lower temperatures depending on properties of the 
boundary layer, and T i  remains substantially lower than Tgl assumed in the 
calculations. The reason for the substantial decrease of Tg of the model as 
compared with Tg of the binder in this case is due to the inclusion of the elastic 
high-modulus element into the model which substantially increases the value 
of G’. Increase in G’ decreases the mean relaxation time 7 of the model since 
7 = o/G’ where q is the internal friction coefficient. 7 = f ( T ) ,  tan 6 values reach 
a maximum at a temperature where the 7 value becomes comparable to the model 
deformation period. Thus, decrease in T values due to the increase of G’ should 
result in equality of 7 and a cyclical deformation period which occurs at  lower 
temperatures, where a maximum of tan 6 is observed. 

Another important peculiarity of the three-component model, with parallel 
deformation of the components, is the change in the temperature dependence 
of tan 6 as compared to the tan 6 = f ( T )  curve of a two-component binder in- 
cluded into the three-component model (1). Curves 2 and 3 of Figure 2 illustrate 
this phenomenon, showing temperature dependencies tan 6 b  of the binder, on 
whose basis the three-component models and curves 1 and 3 of Figure 2 were 
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Fig. 3. Dependencies Tg = f(qf) for type B model at Tgf = 117’C for boundary layers with different 

Tgl: 1. Tgi = 152%; 2.142%; 3.132’C; 4.102OC; 5.92%; 6.82’C. 
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obtained. A t  a certain ratio of components (Fig. 2) and variations in their 
properties, addition of reinforcing elements prqmote loss maxima resolubility 
on curves tan 6 = f ( T )  of the boundary layer and of the bulk of the binder (see 
curves 3 and 4), but worsening of the resolubility is also possible (compare curves 
2 and 1). Curves Tg = f [Pb[/(Pb + cpi)] were obtained on the basis of calculations 
of tan 6 = f (T) curves by variation of relative concentration of boundary layer 
in binder polymer for various constant values cpj. Curve 1 of Figure 4 charac- 
terizes the temperature of maximum tan 6 in the absence of an elastic component, 
i.e., cpj = 0. An increase in relative concentration of the component with Tgl, 
which is 15’ lower than Tgb, shifts maximum tan 6 to lower temperatures, and 
at  high “soft” component content the second maximum appears (curve 1’). 
Simultaneously, two maxima on curves tan 6 = f ( T )  are observed only in a very 
narrow interval of changes in cpl / (cp l+ vb) (from 0.8 to 0.9). The presence of the 
third (elastic) reinforcing element markedly changes this interval. For example, 
a t  cpj = 0.05, the second maximum appears at  lower cp1 (see curves 2 and 2’), and 
the simultaneous existence of two maxima is seen in a broader interval (0.5 - 

For cpj = 0.2, the concentrations range cpz/(cpl+ cpj) (see curves 3,3’, 4, and 4’, 
Fig. 4) for the simultaneous existence of both maxima becomes still wider and 
shifts toward lower values cpi. A change in Tg = f [cpl/(cpl + cpj)] dependence also 
occurs with addition of the elastic element. In the presence of the elastic element, 
(filler), Tg of the model is significantly less dependent on cpl / (cp l  + cpj) within a 
wide concentration range than in the absence of the elastic element. 

These peculiarities may explain the results of the study of viscoelastic prop- 
erties of anisotropic composite materials in the transition region temperature 
and aid in obtaining data on properties of polymer boundary layers in such 
compositions. 

0.75) ofcpZ/(cpl + q b ) .  

MODELS WITH SERIES DEFORMATION OF THE 
COMPONENTS 

For series deformation of the components, dynamic viscoelastic properties 
of the system are calculated by2 

0 0.2 0.4 0,6 0,8 & 
%+!@ 

Fig. 4. Dependence T, vs. cp1 for three-component model with deformation of the components 
in parallel a t  different concentrations cpf of the reinforcing elements: 1,l’. without reinforcing 
elementa,cpj = O .  2,2‘. ‘pf = 0.05. 3,3’. cpf = 0.2. 4,4‘. c p f  =0.6. 



58 BABICH AND LIPATOV 

The complex modulus can be expressed in terms of the real and the imaginary 
part. However, calculation of tan 6 in this case would be very complicated; and, 
therefore, it was preferred to use the equation for the two-component series 
deformation model2: 

‘PCGL + ‘Pf G; x =  
(GLl2 + (GI)2 (G;)2 + (G;)2 

Y - _  - 
X 

(7) 

where G; and G; are the real and imaginary parts of the complex shift modulus 
of the reinforcing elements. 

G:, Gi, and pC have similar characteristics for the binder, which, in turn, can 
be calculated from the equations: 

GI: K 
tan 6, = 7 = - 

K 
2 2  + K2 Gc 

G l  = 
z 

z2+ K2 
GL = 

where 

‘ P l G  + ‘Pb Gb z= 
(G;)2 + (G;)2 (Gb)2 + (Gi)2 

‘PIG; + ‘Pb G i  K =  
(G;)2 + (G;)2 (Gb)2 + (Gi)2 

Thus, using eqs. (81, (9), and (lo), the characteristics of the two-component 
binder are first calculated and then these are used to calculate characteristics 
of the reinforcing elements-two-component binder system by the eqs. (5), (6), 
(7). Properties of the boundary layer and of the bulk of the polymer have already 
been specified. To avoid difficulties connected with nonuniformity of defor- 
mation of the binder a t  the same deformation direction, plate reinforcing ele- 
ments were used ( r  = 10 mcm) instead of the cylindrical ones. As in the previous 
case, cp1 can be expressed through tpf using eq. (4). The change of cylindrical 
reinforcing elements for thin plate by series deformation makes the model more 
crude; however, its physical meaning does not change (the components are de- 
formed in series) and, qualitatively, the trend for change in T, = f(pf) will be 
the same. For plate reinforcing elements, their concentration may be close to 
1. As for the given value 2dlr = 0.2 at  ‘pf 2 0.85, all the polymer in the bulk 
transforms in the state of boundary layer. The system becomes a two-component 
one, and cp1 should be determined as cp1 = 1 - q. 

Calculations yielded data on T, of compositions with different concentrations 
of the reinforcing filler a t  different Tgl. These data are generalized in Figure 
5 as concentration dependencies T, of compositions with varying Tgl. Figure 
5 shows decreasing T, of the polymer under the action of the filler surface. In 
such a composite, there occurs a shift of the loss maximum to lower temperature 
if difference between glass transition temperatures AT, = Tgb - Tgl of the 
boundary layer and that of the bulk of the binder does not exceed 2OoC (curves 
5 and 6). If AT, > 20°C, then with certain content in reinforcing elements the 
filler (in our case qf = 0.2), there appears the second loss maximum (curve 7). 
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Fig. 5. Dependence Tg = f(w) for type A models having Tgb = 117°C and different Tgl: 1. Tgl 
= 152OC. 2.142OC. 3.132OC. 4.122OC. 5.112OC. 6.102OC. 7,8.92OC. 

Its position on the temperature scale is close to Tg and shifts toward lower 
temperatures with growing concentration of the reinforcing elements. The first 
maximum in this case is shifted toward higher temperatures (see curve 8, Fig. 
5). In case Tgl of the boundary layer increases under the influence of the filler 
surface, T, of the composition is significantly increased only at  very high filler 
concentrations (see curves 3 and 4, Fig. 5) when actually the entire polymer has 
properties of the boundary layer. In this case, when AT, > 20°C, second max- 
imum appearance is also observed, but at  higher filler concentration than in the 
case of “soft” boundary layer (see curves 1 and 2, Fig. 5). 

The studied model shows a loss maximum shift toward higher temperatures 
with growing pf and Tg of the boundary layer is more than 20°C as compared 
with Tg of the bulk of the polymer (see curve 8, Fig. 5). In this case, the increase 
in T, of the composition with increase in pf occurs more smoothly than in the 
case of the “rigid” boundary layer. “Rigid” boundary layer sharply increases 
the T, of the composition, but only at high filler concentrations (see curves 3 and 
8, Fig. 5). 

Differing from the parallel deformation case, deformation curves tan 6 = f (  T )  
of the three-component composition with high-modulus interlayers are nearly 
the same shape as that for the pure polymer. Maxima are observed at the same 
temperature as for the polymer. Therefore, shift and resolubility of the maxima 
in a three-component system of type A occur similarly as in a two-component 
polymeric system with series deformation of the c0mponents.l The volume 
concentration of filler in this case is insignificant. 

MODEL OF THE COMPOSITE MATERIAL WITH A DISPERSE 
FILLER 

In composite materials with a disperse filler, some part of the polymer inter- 
layers in the binder is getting deformed in series with the filler particles, while 
the other part is deformed in parallel. To simplify calculations, assume that 
filler particles are cube-shaped with edge a.  Filler particles are arranged in the 
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filler regularly as a simple cubic lattice with distance b between filler particles 
centers and thickness of boundary layer d. An elementary cell of such a material 
is represented in Figure 6(a). To determine ratio of the volume fractions of the 
components with varying filler concentrations, consider the equivalent plain 
model. The phenomenological model of the filled polymer [Fig. 6(b)]  with 
changed properties of the polymer at the interface looks more complex than the 
Takayanagi model.4 The model of Figure 6 ( b )  can be considered as consisting 
of two models, deformed in series: one of them being the Takayanagi model, 
formed of the boundary layer 2' and the binder 3'; the other being that with de- 
formation of the filler 1, boundary layer 2 and polymer 3 in parallel, Figure 
1(b). 

Figures 6(a) and 6(b) illustrate that the X and $ parameters of the Takayanagi 
model formed of the boundary layer 2' and some part of the binder 3 can be ex- 
pressed as 
qf = a3/b3:  

- _ -  
2 2  

(12) 
A =  (: + d)2 - ( a +  2d)2p  - ( 4d 4d2) 

Of - 1+-+,.%$ - 
a2 a a  

Similarly, for parallel deformation of components 1,2,  and 3, the model volume 
fraction of the filler p 1 ,  can be expressed in terms of the volume fraction of the 
filler qf 

(13) 
a 

PI=;=?& 

and volume fraction of the boundary layer p2  in the same volume element 
d - a  4ad 4d 

El=---- - --33 (b/2)2 b2 a 

- d 
2 

Fig. 6. Elementary cell of filled polymer A and its plain model B. 



RELAXATION MAXIMA IN COMPOSITES 61 

The volume fraction df of the model with parallel deformation in the generalized 
model of the filled polymer, respectively, can be expressed as: 

a2 df=,=m (15) 

Modeling properties of the boundary layer of the polymer and using eqs. (2)-(15), 
curves tan 6 = f ( T )  for various ‘pf and Tg have been calculated. For these cal- 
culations we have taken d/u = 0.1. A t  ‘pf > 0.6, all the polymer exists in the 
boundary layer. For ‘pf > 0.6, the results of calculation of TR = f ( ‘p f )  are not 
given. For the “rigid” boundary layer (Tgl > T g b )  (Fig. 7), a filler concentration 
increase would not necessarily result in tan 6 maximum; Tgl should be more than 
20°C higher than Tgb. In this case, only at  rather high ‘pf concentration on tan 
6 = f ( T )  curves a second maximum appears at  a temperature close to Tgl. 

For the “soft” boundary layer (Tgl < Tgb), a more complex behavior of the 
model is observed. When AT = Tgb - Tgl < 2OoC in particular, a ‘pf increase 
displaces tan 6 maximum toward lower temperatures, but with AT > 20°C, or 
‘pf increase displaces tan 6 maximum toward higher temperatures. A t  rather 
high filler concentrations, the second maximum appears a t  a temperature close 
to Tgl. 

Comparison of the results obtained with the data reported in Ref. 1 illustrates 
that in a three-component model of the filled polymer with changing properties 
of the polymer boundary layer, shift and resolubility maxima on tan 6 = f ( T )  
curves occur similar to the two-component binder model, part of the three- 
component model. 
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Fig. 7. Dependencies Tg = f(ppl) at Tgpl = 117°C and Tgl: 1. Tgl = 152°C. 2. 142°C. 3. 132°C. 
4. 92°C. 5. 82°C. 6. 120-152OC. 7. 112°C. 8. 107°C. 9. 102°C. 10. 92°C. 11. 82°C. 
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CONCLUSIONS 

Thus, quantitative analysis of viscoelastic behavior of the three-component 
models of composite materials in the range of the polymer transition state has 
shown that in materials such as laminated and reinforced plastics at deformation 
of the components of the composite materials in series, resolubility and shift of 
tan 6 maxima are due to the change in properties of the polymer boundary layer. 
These property changes are entirely dependent on the ratio of concentrations 
of the boundary layer, the bulk polymer, and difference in glass-transition 
temperatures. Concentration of the filler only affects Tg of the composition due 
to the change in concentrations of the boundary layer and the bulk of the 
binder. 

For relatively simple models of the filled polymer and for the three-component 
models with deformation of the components in series,l, the relaxation maxima 
tan 6 for three-component models of 'compositematerials are located at  tem- 
peratures where tan 6 maxima of the polymer constituent of the composite ma- 
terial are observed. In deformation of the components of the three-component 
model, maximum resolubility depends not only on the cp1 to pb ratio and AT,, 
but on filler concentration cpf as well. 

Parallel deformed three-component models have an interesting peculiarity: 
in s m d  concentration ranges for the high-modulus component, a sizable decrease 
in Tg of the composition is observed with increasing cpf. In our previous report,l 
similar effects were obtained in calculations for the two-component model with 
increasing boundary layer concentration containing much higher Tgl as compared 
to Tg. However, for the models with a high-modulus filler, this effect is more 
essential. 

The above analysis of temperature dependencies, the tan 6 of simple models 
of composite materials in the transition temperature range for the polymer can 
be useful for understanding experimental data for viscoelastic behavior of real 
composite materials. 
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